

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY



| Course title                                                                                                 |                             |                             |                                  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|----------------------------------|
| Atmospheric Pollution in the coastal zone                                                                    |                             |                             |                                  |
| Studies                                                                                                      |                             |                             |                                  |
| Field of study                                                                                               | Туре                        | Form                        | Specialization                   |
| Oceanography, Geology                                                                                        | BA, MA                      | Full-time                   | all                              |
| Teaching staff: prof. UG,                                                                                    | dr hab. Anita Lewandov      | vska                        |                                  |
|                                                                                                              |                             |                             |                                  |
| Lecture: 10 hours                                                                                            |                             | ECTS credits: 2             |                                  |
|                                                                                                              |                             |                             |                                  |
| Aims of education                                                                                            |                             |                             |                                  |
| This course aims at provid                                                                                   | ing students with improv    | ved understanding of air    | pollution in the coastal zone of |
| the sea. Topics will include                                                                                 | e the principles of air pol | lutants, their sources, for | rmation, dispersion and removal  |
| processes. Techniques of                                                                                     | in situ measurements o      | f pollutants in the amb     | ient air will be also discussed. |
| Lectures will be incorporat                                                                                  | ed into extensive discuss   | ses and videos.             |                                  |
| Students will develop and practice skills in reading, listening, summarizing and interpreting the scientific |                             |                             |                                  |
| literature and the popular daily American and English press in regards to air pollution. Students will       |                             |                             |                                  |
| demonstrate ability to se                                                                                    | parate facts from rhete     | oric or opinion. Studer     | nt will practice the ability of  |
| functioning effectively in multidisciplinary teams and communicate scientific information effectively        |                             |                             | ientific information effectively |

### (orally, writing). Course contents

Basic introduction to atmospheric issues, chemical composition and structure of Earth atmosphere, characteristics of selected air pollutants. History and the present study of air pollution. Characteristic of the Baltic Sea region and identification pollutants sources in the marine atmosphere. Annual, seasonal and diurnal chemical composition variation of aerosols in the urbanized coastal zone of the Baltic Sea under changeable meteorological condition. The role of the sea in decreasing the level of air pollution. Consequences of air pollution for the climate, eutrophication, human health and the life quality. The air quality monitoring and longtime trends of air pollution state in the southern Baltic Sea (concentrations levels, alerts, informing citizens about dangerous situations). Pollution emission controls and regulations. Pollution reduction techniques. Basic information about wet and dry deposition, deposition velocity for gases and selected ions in aerosols. Chemical composition, transformation and removal processes of the air pollutants in marine regions. Acidifying and neutralizing compounds of wet deposition in the coastal regions. Loads of pollutants to the Baltic Sea.





| Course title                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Baltic Benthic Biodiver                                                                                                                                                                                                                                                                                                                                                                                                                    | sity                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |  |
| Stuales<br>Field of study                                                                                                                                                                                                                                                                                                                                                                                                                  | Type                                                                                                                                                                                                                                                                                                   | Form                                                                                                                                                                                                                                                                                                | Specialization                                                                                                                                                                     |  |
| Oceanography                                                                                                                                                                                                                                                                                                                                                                                                                               | BA                                                                                                                                                                                                                                                                                                     | Full-time                                                                                                                                                                                                                                                                                           | all                                                                                                                                                                                |  |
| <b>Teaching staff:</b> prof. UG,                                                                                                                                                                                                                                                                                                                                                                                                           | dr hab. Urszula Janas                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |  |
| Lecture: 15 hours                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        | ECTS credits: 4                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |  |
| Practical exercise: 30 hour                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |  |
| Aims of education                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    |  |
| and species, structural and<br>management of the Baltic                                                                                                                                                                                                                                                                                                                                                                                    | functional biodiversity<br>Sea                                                                                                                                                                                                                                                                         | , human impacts on sediment                                                                                                                                                                                                                                                                         | systems and the benthos in                                                                                                                                                         |  |
| Course contents<br><u>A. Lectures</u><br>A.1. The uniqueness of the<br>distribution of benthic hab<br>benthic organisms to vario<br>A.2. Keystone species, eng<br>for human.<br>A3. Habitats and biotopes<br>habitats.<br>A.4. Benthic communities,<br>A5. Human impact on Balt<br><u>B. Practical exercises</u><br>B.1. Spatial differences in<br>assemblages in quality asse<br>B2. Non-indigenous specie<br>B.3. Functioning of the ben | e environment in the Ba<br>itats and species. Exam<br>us environmental parar<br>gineering species, role a<br>in the Baltic Sea. Coast<br>, structural and function<br>tic benthic systems and<br>structural and function<br>essment.<br>es in Baltic benthic syst<br><u>in thic fauna in undisturb</u> | ltic Sea, variability of the envi<br>ples of behavioural and physic<br>neters.<br>and value of the benthic organi<br>tal area and deep see sediment<br>hal diversity, functional groups<br>the benthos in management of<br>al diversity of the benthic faun<br>em.<br>bed and disturbed environment | ironment, spatial<br>ological adaptations of<br>sms for environment and<br>. Role of the Baltic benthic<br>s, biological traits concept.<br>f the Baltic Sea.<br>a. Baltic benthic |  |







# Course title Chemical processes in and between the atmosphere, seawater and sediment of the marine environment

| <u>a</u> . |     |   |
|------------|-----|---|
| Stu        | dia | c |
| Siu        | uic | Э |

| Studies                       |        |           |                |
|-------------------------------|--------|-----------|----------------|
| Field of study                | Туре   | Form      | Specialization |
| Oceanography<br>Geology Water | BA, MA | Full-time | all            |
| management                    |        |           |                |
| management                    |        |           |                |

### **Teaching staff**

prof. UG, dr hab. Anita Lewandowska, prof. UG, dr hab. Bożena Graca, dr Magdalena Bełdowska, dr Dorota Burska, dr Katarzyna Łukawska-Matuszewska

| ý 5                |                 |
|--------------------|-----------------|
| Lecture: 30 hours  | ECTS credits: 6 |
| Workshop: 75 hours |                 |
|                    |                 |

### Aims of education

The course aims to familiarize students with chemical processes occurring on the boundary layers between the atmosphere, sea and sediment. Fluxes of carbon, nitrogen, phosphorus and toxic metals (e.g. mercury, lead, cadmium) as well as the importance of relationship between the identified components of the environment will be discussed. The fundamental course issues will be associated with the present-day problems of environment pollution.

#### **Course contents**

<u>Lecture:</u> The introduction to atmospheric chemistry. Carbon, nitrogen and phosphorus in the air. Microlayer of the sea. The role of sea and land in creating chemical composition of aerosols in the coastal zone. Wet and dry deposition of aerosols and gases to the sea water. The influence of atmosphere on sea water and sediments quality. Aerotoxins. The exchange of aerosols and gases between sea-land and atmosphere. The introduction to bottom sediment chemistry. Tools used to collection of bottom sediment and pore water samples. The exchange of dissolved constituents and gases between sediment-water boundary layer. Preliminary information on the toxicity of mercury, lead and cadmium in the marine environment. Toxic metals in atmosphere, including gaseous, aerosols, dry and wet deposition. Toxic metals in sewater including coastal and offshore zone. Toxic metals in sediments today and in the past.

<u>Workshop:</u>Atmospheric field experiment. Atmospheric laboratory course/ chemical analyze of sea microlayer and air samples. Calculation of chosen aerosol species and gases fluxes between air and sea microlayer. Sampling of sediments and pore-water. Measurement of fluxes of dissolved constituents at the sediment-water interface. Calculation of fluxes of dissolved constituents at the sediment-water interface.

Sampling of pore-water. Chemical analysis of pore water and sediment. Calculation of benthic diffusive fluxes of nutrients at the sediment-water interface based on sediment and pore water analysis. Suspension field experiment. Chemical analysis of C, N, P, Si in particulate matter. Calculation of the vertical particulate C, N, P, Si flux. Preparation of environmental samples to analyze of toxic metals: mercury and lead. Analysis of mercury and lead concentration in environmental samples. Toxic metals in air, water and sediments of coastal zone.





| Course title                                          |                         |                   |                |  |
|-------------------------------------------------------|-------------------------|-------------------|----------------|--|
| <b>Dynamical Systems Th</b>                           | eory in Biology and Oce | anography         |                |  |
| Studies                                               |                         |                   |                |  |
| Field of study                                        | Туре                    | Form              | Specialization |  |
| Oceanography                                          | BA, MA                  | Full-time studies | all            |  |
| Teaching staff: prof. UG dr hab. Witold Cieślikiewicz |                         |                   |                |  |
| Lecture: 45 hours                                     | Exercise: 35 hours      | ECTS credits: 7   |                |  |
| A. 6. 1. 4.                                           |                         | 4                 |                |  |

# Aims of education

Students will learn in a clear and accessible way many concepts from contemporary dynamics that have applications in biology and oceanography, in particular in such areas as biological oceanography, ecology, geophysical fluid dynamics, coastal hydrodynamics, and marine geology. The concepts studied include stability, periodic and chaotic behaviours of nonlinear systems, fractals, cycles, and complex dynamical systems. Students will learn on how to extract information about dynamics form data and will study time-series analysis techniques that allow one to investigate chaotic behaviour of a system.

The course is meant to attract a wider range of students of oceanography, not only those interested in strict physical oceanography. I hope to demonstrate with this course the beauty and power of mathematics in general, and its practical applications in biology and oceanography as well as the excitement of dynamical systems in particular. However, the mathematical prerequisites for this course are very modest. The actual course will start with a reminder of important background mathematical material from calculus, linear algebra, and complex numbers. This mathematical background to the course will also give a gentle introduction to differential equations.

The computer is an extraordinary visual and numerical exploration tool for dynamical systems. The computer programming language used in this course is *Mathematica*, which is a very powerful high-level programming language. *Mathematica* is used for the following reasons: computations are written in a *Mathematica* program in almost exactly the same way as the user would express them; the *Mathematica* language is very simple and easy to understand; *Mathematica* allows for a symbolic programming, on one hand, and has extensive numeric capabilities, on the other hand; *Mathematica* has extensive and easy-to-use graphics capabilities which make it possible to use scientific visualisation to analyse computer computation and simulation results; *Mathematica* is actually an integrated computing environment with an extremely well designed user interface called *a notebook* that allows one to use the computing system in an interactive way. The course will start with introduction on *Mathematica* programming for writing symbolic and numerical computation and simulation programs with emphasis given to functional style of programing, i.e. (i) looping is mostly avoided, (ii) conditional branching is minimised (iii) lists being the general data structures are manipulated in their entirety rather than in a piecemeal fashion, (iv) built-in *Mathematica* functions are utilised whenever possible, and (v) *anonymous* functions and *nested* function calls are used extensively.

## **Course contents**

## I. Elements of *Mathematica* programming

- 1. Symbolic programming.
- 2. Lists.
- 3. Mathematica functions and functional programming.
- 4. Graphics and animations in *Mathematica*.
- 5. Illustrative short programs and examples.

## II. Mathematical background



UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY



- 1. Complex numbers.
- 2. Mathematical sequences.
- 3. Functions.
- 4. Derivatives.
- 5. Indefinite and definite integrals.
- 6. Basics of ordinary differential equations.
- 7. Nonlinearity and nonlinear differential equations.
- 8. Matrices and elements of linear algebra.
- 9. Basics of vector calculus.

# III. Basics and selected general problems of Dynamical Systems Theory

- 1. Concept of a dynamical system: state vectors, phase space, attractors, discrete time and continuous time, examples.
- 2. Maps and flows, Poincaré map.
- 3. Reconstructing the dynamics of the system: return maps, reconstructing the phase plane.
- 4. Linear systems in one and more dimensions: Markov chains.
- 5. Nonlinear systems: fixed points, stability, Lyapunov functions, periodicity in a two-dimensional dynamical system
  - i. continuous time: Lorentz system and chaos
  - ii. discrete time: stability of periodic points, bifurcation and computer-generated bifurcation diagrams.
- 6. Boolean networks and cellular automata.
- 7. Fractals: Cantor set, Sierpiński triangle, Koch's snowflake, fractal dimension, fractals in nature and dimension of physical fractals, examples.
- 8. Complex dynamical systems: Julia sets, the Mandelbrot set.
- 9. Strange attractors.
- 10. Characterising chaos.

# IV. Specific topics in biology and oceanography Biology

- 1. Model of fly population: nonlinear finite-difference equations, cycles and their stability, chaos and the period-doubling route to chaos; bifurcation diagram and Feigenbaum's number; Nicholson's blowflies differential equations with inputs.
- 2. Chaos in periodically stimulated heart cells.
- 3. Locomotion in salamanders: Boolean networks and cellular automata.
- 4. Game of "Life": cellular automata with a rule inspired by interactions of living organisms with one another.
- 5. Brownian motion and Lévy walks: fractals and nonlinear dynamical systems, random walks with self-similar dynamics and power-law scaling.
- 6. Growth in an *E.coli* colony: the Eden model for growth.
- 7. Predator and prey biological system: a classical model of an ecological Lotka and Volterra system.

Oceanography

- 1. Diffusion limited aggregation (DLA) and models of coral reef growth as an example of fractal growth.
- 2. Why it may be so hard to predict weather: dynamics in three dimensions; Lorentz equations, butterfly effects and chaos.
- 3. Lagrangian chaos: chaotic mixing of fluids, Stokes flow in a circular container.
- 4. Vortex movement.
- 5. Chaos in the North Pacific SST.





| Course title                                                                                           |                                                                                                              |                                |                              |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|--|
| Ecological assessment of                                                                               | of marine environment                                                                                        | S                              |                              |  |
| Studies                                                                                                |                                                                                                              |                                |                              |  |
| Field of study                                                                                         | Туре                                                                                                         | Form                           | Specialization               |  |
| Oceanography                                                                                           | BA                                                                                                           | Full-time                      | All                          |  |
| Water management,                                                                                      |                                                                                                              |                                |                              |  |
| Marine Ichtiology                                                                                      |                                                                                                              |                                |                              |  |
| Teaching staff                                                                                         | Vatarian Constant                                                                                            |                                |                              |  |
| dr Aleksandra Zgrundo, dr                                                                              | Katarzyna Smolarz                                                                                            |                                |                              |  |
| Lecture: 30 hours                                                                                      |                                                                                                              | ECTS credits: 5                |                              |  |
| Practical class: 45 hours                                                                              |                                                                                                              |                                |                              |  |
| Aims of education                                                                                      |                                                                                                              | 1 • 1 • 1 •/ • •               |                              |  |
| • Outline the principles a                                                                             | ind challenges of effective                                                                                  | biological monitoring in co    | onservation and              |  |
| Introduce and discuss of                                                                               | environments.                                                                                                | nitoring matheds and tash      |                              |  |
| • Infloduce and discuss c                                                                              | sore across all levels of the                                                                                | biological organisation in     | order to identify afficient  |  |
| preventive action and r                                                                                | actora accosystem services                                                                                   | and functions                  | order to identify efficient  |  |
| <ul> <li>Provide examples of bit</li> </ul>                                                            | ological monitoring and c                                                                                    | onservation initiatives in m   | arine environments           |  |
| <ul> <li>Enable critical scrutiny</li> </ul>                                                           | of current and future prov                                                                                   | prammes and monitoring da      | ta in marine waters          |  |
| management.                                                                                            | of earlent and future pro-                                                                                   | grammes and monitoring du      | a minume waters              |  |
| Course contents                                                                                        |                                                                                                              |                                |                              |  |
| The course commences with                                                                              | th an introduction to the p                                                                                  | rinciples of biological meth   | ods used in monitoring of    |  |
| marine environments. The rationale and procedures behind the effective design of biological monitoring |                                                                                                              |                                |                              |  |
| systems based on o bioindicators, biomonitors and ecotoxicology will be outlined. Techniques necessary |                                                                                                              |                                |                              |  |
| for the interpretation of mo                                                                           | for the interpretation of monitoring data will also be presented. Field trips and workshops covering coastal |                                |                              |  |
| systems enable the applicat                                                                            | tion of these methods via                                                                                    | a number of case studies. En   | mphasis will be placed on    |  |
| assessment of the suitabilit                                                                           | y and effectiveness of exi                                                                                   | sting monitoring methods. I    | Finally the issue of         |  |
| sustainable marine waters                                                                              | management will be discu                                                                                     | ssed. The following topics     | will be covered:             |  |
| • Introduction to the subj                                                                             | ect of ecological assessm                                                                                    | ent of environment and esse    | ential issues related to the |  |
| monitoring of waters.                                                                                  |                                                                                                              |                                |                              |  |
| • Introduction to the fund                                                                             | lamental definitions, conc                                                                                   | epts and problems in ecolog    | gical water assessment.      |  |
| • Principles behind the d                                                                              | esign of monitoring system                                                                                   | ns in marine environments.     |                              |  |
| • Introduction to surveying                                                                            | ng and monitoring method                                                                                     | ls using different type of bio | oindicators, biomarkers      |  |
| (susceptibility, exposure and effect) and ecotoxicological tests.                                      |                                                                                                              |                                |                              |  |
| • Threats to marine ecosystems and assessment of their state – the Baltic Sea case study.              |                                                                                                              |                                |                              |  |
| • Introduction to legal fra                                                                            | ameworks for ecological a                                                                                    | assessment of marine waters    | (the Marine Strategy and     |  |
| Framework Directive a                                                                                  | nd other key documents f                                                                                     | or the conservation of mari    | ne waters in the EU).        |  |
| • Environmental Impact                                                                                 | Assessment (EIA).                                                                                            |                                |                              |  |
| • Introduction to marine                                                                               | waters management.                                                                                           |                                |                              |  |
| • Special issues: marine                                                                               | protected areas (MPA) an                                                                                     | d reconstructions of historic  | al environments.             |  |
|                                                                                                        |                                                                                                              |                                |                              |  |







| Course title                |                            |                          |                               |  |
|-----------------------------|----------------------------|--------------------------|-------------------------------|--|
| Fish Biology                |                            |                          |                               |  |
| Studies                     |                            |                          |                               |  |
| Field of study              | Туре                       | Form                     | Specialization                |  |
| Oceanography,               | BA                         | Full-time                | all                           |  |
| Biology                     |                            |                          |                               |  |
| Teaching staff              |                            |                          |                               |  |
| prof. UG dr hab. Mariusz S  | Sapota, prof. UG dr hab. k | Konrad Ocalewicz, dr Ar  | nna Pawelec                   |  |
| Lectures: 30 hours          |                            | ECTS credits: 5          |                               |  |
| Laboratory: 45 hours        |                            |                          |                               |  |
| Aims of education           |                            |                          |                               |  |
| This course gives a know    | ledge of the basic fish t  | biology and ecology wi   | th special emphasis to marine |  |
| fishes. Basic methods of ic | hthyological investigation | is will be presented and | practice.                     |  |
| Course contents             |                            |                          |                               |  |
| 1. Fish Biology Invest      | tigation Principles        |                          |                               |  |
| 2. Fish Anatomy             |                            |                          |                               |  |
| 3. Fish Reproduction        |                            |                          |                               |  |
| 4. Fish Growth              |                            |                          |                               |  |
| 5. Fish Behaviour           |                            |                          |                               |  |
| 6. Fish Ecology             |                            |                          |                               |  |
| 7. Fish Genetics            |                            |                          |                               |  |







| Course title                                                                          |                             |                           |                               |  |
|---------------------------------------------------------------------------------------|-----------------------------|---------------------------|-------------------------------|--|
| Geology of the ocean and sea floor                                                    |                             |                           |                               |  |
| Studies                                                                               |                             |                           |                               |  |
| Field of study                                                                        | Туре                        | Form                      | Specialization                |  |
| Oceanography                                                                          | BA, MA                      | Full-time                 | all                           |  |
| Geology                                                                               |                             |                           |                               |  |
| Geography                                                                             |                             |                           |                               |  |
| Teaching staff                                                                        |                             |                           |                               |  |
| dr Ewa Szymczak, dr Agn                                                               | ieszka Kubowicz-Grajewsł    | a                         |                               |  |
| Exercise: 30 hours                                                                    |                             | ECTS credits: 3           |                               |  |
|                                                                                       |                             |                           |                               |  |
| Aims of education                                                                     |                             |                           |                               |  |
| This course gives a knowle                                                            | edge of the origin, geology | and morphology of the     | world's seas and oceans floor |  |
| and the geologic processes                                                            | active in the deep oceans a | and in shelf seas. The co | ourse also covers the         |  |
| sediments, sediment source                                                            | es and sedimentation patter | ns in oceans and seas. N  | Modern marine geological      |  |
| laboratory methods and ins                                                            | strumentation used for anal | ysing sediments and see   | dimentological data will      |  |
| demonstrate some of the to                                                            | ools used in reconstructing | the past sedimentary an   | d environmental conditions.   |  |
| Another important issue concerns the mineral resources, their genesis and occurrence. |                             |                           |                               |  |
| <b>Course contents</b>                                                                |                             |                           |                               |  |
| 1. Morphology and genesis/origin of the oceans and inland seas (e.g. Baltic Sea)      |                             |                           |                               |  |
| 2. Geology of the oceanic and continental crust.                                      |                             |                           |                               |  |
| 3. Laboratory analysis of bottom sediment samples.                                    |                             |                           |                               |  |
| 4. Core description using data sets from IODP.                                        |                             |                           |                               |  |

- 5. Mineral resources of the oceans and seas.
- 6. Comparison of two different ocean / sea basins case studies.







| Course title                                       | Acoustics                  |                             |                                  |  |
|----------------------------------------------------|----------------------------|-----------------------------|----------------------------------|--|
| Studiog                                            | Acoustics                  |                             |                                  |  |
| Field of study                                     | Tuno                       | Form                        | Specialization                   |  |
| <u>Cooppography</u>                                | Пуре                       | Full time                   |                                  |  |
| Geology                                            | DA                         | 1'un-unie                   | all                              |  |
| Teaching staff                                     |                            |                             |                                  |  |
| Assoc. Prof. Natalia Gorsk                         | a (habilitation)           |                             |                                  |  |
| Lecture: 30 hours                                  |                            | ECTS credits: 5             |                                  |  |
| Classes (problem solving):                         | 10 hours                   |                             |                                  |  |
| Practical classes: 5 hours                         | 10 110415                  |                             |                                  |  |
| Aims of education                                  |                            |                             |                                  |  |
| 1 To give the knowledge                            | of                         |                             |                                  |  |
| • the basic pheno                                  | mena concerning the so     | und propagation in mari     | ne conditions                    |  |
| • the acoustic wa                                  | ve generation and recei    | ving                        | le conditions,                   |  |
| • the main princip                                 | nles governing the proce   | ×1115,                      |                                  |  |
| • the methods use                                  | ed in their study.         |                             |                                  |  |
| • the main resear                                  | ch problems in hydroaco    | oustics and its relation to | the development streams of       |  |
| oceanography.                                      |                            |                             |                                  |  |
| 2. To demonstrate (at pre                          | liminary level) the effici | ency of application of re   | emote hydroacoustical            |  |
| techniques in:                                     |                            | 5 11                        | 5                                |  |
| <ul> <li>interdisciplinary</li> </ul>              | y study of marine envirc   | onment                      |                                  |  |
| <ul> <li>monitoring of it</li> </ul>               | ts state for sustainable e | xploitation and exploration | on of marine recourses           |  |
| 3. To provide (at prelimin                         | ary level) knowledge ar    | nd skills required:         |                                  |  |
| • to perform scien                                 | ntific research in hydroa  | coustics                    |                                  |  |
| • to efficient and                                 | practical use the innova   | tive hydroacoustical tech   | nniques                          |  |
| Course contents                                    |                            |                             |                                  |  |
| 1. Lectures                                        |                            |                             |                                  |  |
| 1.1 Acoustic wave: definit                         | ion, variations in time a  | nd space and their mathe    | ematical description;            |  |
| 1.2 Sound propagation: sou                         | and absorption in marine   | e water, wave spreading     | (spherical and cylindrical       |  |
| spreading);                                        |                            |                             |                                  |  |
| 1.3 Wave phenomena in m                            | arine environment: refle   | ection and transmission a   | t interfaces, wave interference  |  |
| (sum of sounds from two s                          | ources and interference    | near an interface: plane    | standing waves), acoustic wave   |  |
| scattering, sound refraction                       | 1;                         |                             |                                  |  |
| 1.4 Hydroacoustical transd                         | ucers;                     |                             |                                  |  |
| 1.5 Main working principle                         | es and application of sor  | nar systems: single beam    | echosounder, split beam          |  |
| echosounder, multibeam ec                          | chosounder, side scan so   | onar, Acoustic Doppler C    | Current Profiler. Two lecture    |  |
| hours will be arranged on l                        | board of r/v "Oceanogra    | f - 2", where the hydroa    | coustical data collection using  |  |
| the single beam echosounder, will be demonstrated; |                            |                             |                                  |  |
| 1.6 Basics of hydroacoustical data analysis;       |                            |                             |                                  |  |
| 1./ Some aspects of hydro                          | acoustical techniques ap   | plication in marine envir   | ronmental study and monitoring.  |  |
| 2. Classes (problem solvi                          | <b>1g</b> )                | . 11 -                      |                                  |  |
| The simulation exercises w                         | ithin the entire topic rai | ige mentioned above. Th     | ne first two hours are dedicated |  |
| to reminding necessary ma                          | thematical basis.          |                             |                                  |  |
| <b>5. Practical classes</b>                        | he energialized - fra      |                             | consticut data on loss's         |  |
| raining in application of t                        | ne specialized software    | SONAK PKU in hydroa         | coustical data analysis          |  |
|                                                    |                            |                             |                                  |  |





# Course title Speciation, Ecology, Biodiversity and Biogeography of cyanobacteria and microalgae theoretical concepts and facts

| Studies                                                                                               |                                                                                 |                               |                             |  |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------|-----------------------------|--|
| Field of study                                                                                        | Туре                                                                            | Form                          | Specialization              |  |
| Oceanography                                                                                          | BA, MA                                                                          | Full-time                     | all                         |  |
| Marine Ichtiology                                                                                     |                                                                                 |                               |                             |  |
| Teaching staff: prof. UG,                                                                             | dr hab. Katarzyna Palińsl                                                       | Ka l                          |                             |  |
|                                                                                                       |                                                                                 |                               |                             |  |
| Lecture: 12 hours                                                                                     |                                                                                 | ECTS credits: 2               |                             |  |
| Seminar: 18 hours                                                                                     |                                                                                 |                               |                             |  |
| Aims of education Lectur                                                                              | e: knowledge of specific                                                        | ecology and biodiversity of   | cyanobacteria and           |  |
| microalgae. Special attenti                                                                           | on will be given to theore                                                      | tical species concepts used   | in the past and nowadays in |  |
| taxonomy of cyanobacteria                                                                             | 1.                                                                              |                               |                             |  |
| Seminar: To give students                                                                             | the tools necessary to im                                                       | prove their oral communica    | tion & presentation skills  |  |
| while gaining insight into a                                                                          | different species concepts                                                      | and their application to pho- | ototrophic microorganisms   |  |
| <b>Course contents</b>                                                                                |                                                                                 |                               |                             |  |
| A. Lecture:                                                                                           |                                                                                 |                               |                             |  |
| A.1. What is biological div                                                                           | ersity and why should we                                                        | e value it?                   |                             |  |
| A.2. Diversity of phototrop                                                                           | phic microorganisms and                                                         | their adaptations allowing su | urvival in different        |  |
| ecosystems and multip                                                                                 | ole stresses                                                                    |                               |                             |  |
| A.3. Ecological factors tha                                                                           | t influence the pattern of                                                      | life on earth.                |                             |  |
| A.4. Theoretical species co                                                                           | oncepts and their application                                                   | on                            |                             |  |
| A.5. Taxonomy and identif                                                                             | A.5. Taxonomy and identification of cyanobacteria: classical and modern methods |                               |                             |  |
| <b>B.</b> Seminar: Journal club: reading, presenting and discussion of original scientific papers on: |                                                                                 |                               |                             |  |
| B.1. Special adaptation of                                                                            | phototrophs to different e                                                      | nvironments                   |                             |  |
| B.2. Phenotypic vs molecu                                                                             | lar diversity                                                                   |                               |                             |  |
| B.3. Biogeography of phot                                                                             | otrophs; "Everything is e                                                       | verywhere" theory.            |                             |  |
|                                                                                                       |                                                                                 |                               |                             |  |





| Course title                                                                                       |                                                              |            |                      |                           |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------|----------------------|---------------------------|--|
| Use of living aquatic resources                                                                    |                                                              |            |                      |                           |  |
| Studies                                                                                            |                                                              |            |                      |                           |  |
| Field of study                                                                                     | Турє                                                         | <u>)</u>   | Form                 | Specialization            |  |
| Oceanography,                                                                                      | BA                                                           |            | Full-time            | all                       |  |
| Geology,                                                                                           |                                                              |            |                      |                           |  |
| Water management,                                                                                  |                                                              |            |                      |                           |  |
| Marine ichthyology                                                                                 |                                                              |            |                      |                           |  |
| Teaching staff: dr Aldona Dobrzycka-                                                               | -Krahel                                                      |            |                      |                           |  |
| Lecture: 10 hours                                                                                  |                                                              | ECTS c     | redits: 2            |                           |  |
| Project classes:15 hours                                                                           |                                                              |            |                      |                           |  |
| Aims of education                                                                                  |                                                              | 8          |                      |                           |  |
| Achievement of a new knowledge of                                                                  | f the use of liv                                             | ving aquat | ic resources in ind  | ustry and in purification |  |
| processes in aquatic ecosystems.                                                                   |                                                              | • •        |                      |                           |  |
| Development of new skills of interpr                                                               | etation of the                                               | relationsh | ips between the end  | ergy values, biochemical  |  |
| composition, other properties (e.g. an                                                             | nticancer comp                                               | ounds, m   | inerals, vitamins co | ontent) of living aquatic |  |
| resources and their use by human.                                                                  |                                                              |            |                      |                           |  |
| Course contents                                                                                    |                                                              |            |                      |                           |  |
| A. Lectures:                                                                                       |                                                              |            |                      |                           |  |
| A.1. Alive marine resources.                                                                       |                                                              |            |                      |                           |  |
| A.2. Alive freshwater resources                                                                    | 3.                                                           |            |                      |                           |  |
| A.3.Energy values, biochemic                                                                       | al composition                                               | n and oth  | er properties (e.g.  | anticancer compounds,     |  |
| minerals, vitamins content) of a                                                                   | aquatic organisr                                             | ns.        |                      |                           |  |
| A.4. Possibilities of use of                                                                       | organisms in                                                 | purificat  | ion processes in     | the ecosystems and as     |  |
| bioindicators.                                                                                     |                                                              |            |                      |                           |  |
| A.5. Possibilities of use of al                                                                    | live aquatic res                                             | sources in | industry. Aquatic    | organisms used in food    |  |
| processing, pharmaceutical and                                                                     | l cosmetic indus                                             | stry.      |                      |                           |  |
| B. Project classes:                                                                                |                                                              |            |                      |                           |  |
| <b>C.1.</b> How do we use living                                                                   | aquatic resourc                                              | es? Possi  | bilities of the use  | of aquatic organisms in   |  |
| purification processes in aquati                                                                   | purification processes in aquatic ecosystems (case studies). |            |                      |                           |  |
| C.2. How do we use living aquatic resources? Finding the best suitable aquatic organisms to use in |                                                              |            |                      |                           |  |
| aquacultures and their potential applications (case studies).                                      |                                                              |            |                      |                           |  |
| C.3. How do we use living aquatic resources? Finding the best suitable aquatic organisms to use in |                                                              |            |                      |                           |  |
| cosmetic, pharmaceutical and f                                                                     | ood processing                                               | industry ( | case studies).       |                           |  |
|                                                                                                    |                                                              |            |                      |                           |  |
|                                                                                                    |                                                              |            |                      |                           |  |